2024-11

加群基礎

MOD1-8:作りは似ているのにその差が大きい 加群の直積と直和

加群の直積と直和 ベクトルや線形代数のベクトル空間では、成分ごとの和とスカラー倍で体上の加群としての演算を定義していた。これを集合で説明すると直積集合にこの2つの演算を定義していることと同じである。今回は、直積集合にそのまま演算を定義した加群の直積と特別な形の直和を定義しこれらの性質の差を見る。
加群基礎

MOD1-7:作用で0になるの?! 零因子と正則元

零因子と正則元 線形代数では特に気にならない作用だが、環上の加群では加群と作用させる元それぞれ零元でなくともその作用が零元となることがある。今回は、作用で零元にできる零因子とその逆である非零因子(正則元)を定義し作用を線形写像による側面を考える。
加群基礎

MOD1-6:同型を操る基本的な変形とその一意性 準同型定理

準同型定理 集合論では自然な射影とそこから誘導される写像が定義できる。誘導写像が単射になる条件は決まっているが、線形写像の場合は特に核による剰余の関係がちょうど当てはまる。今回は、集合論での誘導写像の事実を用いて誘導写像の性質と準同型定理を示しその系として同型定理群を示す。
加群基礎

MOD1-5:加群の生成と有限生成性 生成された部分加群

生成された部分加群 イデアルと同様に、特定の部分集合を含む最小の加群として生成された部分加群が定義される。こちらも有限生成を考えることができるがその側面はイデアルの場合と異なるものがある。今回は、生成された部分加群を定義するとともに線形代数における基底と環上の加群での生成系について考える。
加群基礎

MOD1-4:割った余りに注目する商集合の加群版 剰余加群

剰余加群 加群構造を持つように商空間を構成した剰余加群は、ただ加群構造を簡略化しただけではなくイデアルの特徴を見る側面が存在する。そしてイデアルの対応と同様に部分加群の対応が存在しこれが大きな意味を持つ。今回は、剰余加群の定義と意義を見るとともに剰余加群同士の一致を考える。
PAGE TOP